总览
Bézier 曲线是一种用于计算机图形学的参数曲线。在本次作业中,你需要实现 de Casteljau 算法来绘制由 4 个控制点表示的 Bézier 曲线 (当你正确实现该算法时,你可以支持绘制由更多点来控制的 Bézier 曲线)。
代码框架
你需要修改的函数在提供的 main.cpp 文件中:
- bezier:该函数实现绘制 Bézier 曲线的功能。它使用一个控制点序列和一个 OpenCV::Mat 对象作为输入,没有返回值。它会使 t 在 0 到 1 的范围内进行迭代,并在每次迭代中使 t 增加一个微小值。对于每个需要计算的 t,将调用另一个函数 recursive_bezier,然后该函数将返回在 Bézier 曲线上 t 处的点。最后,将返回的点绘制在 OpenCV::Mat 对象上。
- recursive_bezier:该函数使用一个控制点序列和一个浮点数 t 作为输入,实现 de Casteljau 算法来返回 Bézier 曲线上对应点的坐标。
de Casteljau 算法说明如下:
- 考虑一个 p0, p1, … pn 为控制点序列的 Bézier 曲线。首先,将相邻的点连接起来以形成线段。
- 用 t : (1 − t) 的比例细分每个线段,并找到该分割点。
- 得到的分割点作为新的控制点序列,新序列的长度会减少一。
- 如果序列只包含一个点,则返回该点并终止。否则,使用新的控制点序列并转到步骤 1。
使用 [0,1] 中的多个不同的 t 来执行上述算法,你就能得到相应的 Bézier 曲线。
注意事项
在确保代码框架一切正常后,就可以开始完成你自己的实现了。注释掉 main 函数中 while 循环内调用 naive_bezier 函数的行,并取消对 bezier 函数的注释。要求你的实现将 Bézier 曲线绘制为绿色。
如果要确保实现正确,请同时调用 naive_bezier 和 bezier 函数,如果实现正确,则两者均应写入大致相同的像素,因此该曲线将表现为黄色。如果是这样,你可以确保实现正确。
拓展
实现对 Bézier 曲线的反走样。(对于一个曲线上的点,不只把它对应于一个像素,你需要根据到像素中心的距离来考虑与它相邻的像素的颜色。)